z-logo
Premium
Hydrogeological Modeling and Water Resources Management: Improving the Link Between Data, Prediction, and Decision Making
Author(s) -
Harken Bradley,
Chang ChingFu,
Dietrich Peter,
Kalbacher Thomas,
Rubin Yoram
Publication year - 2019
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2019wr025227
Subject(s) - computer science , field (mathematics) , metric (unit) , risk analysis (engineering) , management science , certainty , operations research , engineering , business , philosophy , operations management , mathematics , epistemology , pure mathematics
A risk‐based decision‐making mechanism capable of accounting for uncertainty regarding local conditions is crucial to water resources management, regulation, and policy making. Despite the great potential of hydrogeological models in supporting water resources decisions, challenges remain due to the many sources of uncertainty as well as making and communicating decisions mindful of this uncertainty. This paper presents a framework that utilizes statistical hypothesis testing and an integrated approach to the planning of site characterization, modeling prediction, and decision making. Benefits of this framework include aggregated uncertainty quantification and risk evaluation, simplified communication of risk between stakeholders, and improved defensibility of decisions. The framework acknowledges that obtaining absolute certainty in decision making is impossible; rather, the framework provides a systematic way to make decisions in light of uncertainty and determine the amount of information required. In this manner, quantitative evaluation of a field campaign design is possible before data are collected, beginning from any knowledge state, which can be updated as more information becomes available. We discuss the limitations of this approach by the types of uncertainty that can be recognized and make suggestions for addressing the rest. This paper presents the framework in general and then demonstrates its application in a synthetic case study. Results indicate that the effectiveness of field campaigns depends not only on the environmental performance metric being predicted but also on the threshold value in decision‐making processes. The findings also demonstrate that improved parameter estimation does not necessarily lead to better decision making, thus reemphasizing the need for goal‐oriented characterization.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here