z-logo
Premium
Exhumation of the Coyote Mountains Metamorphic Core Complex (Arizona): Implications for Orogenic Collapse of the Southern North American Cordillera
Author(s) -
Gottardi Raphaël,
McAleer Ryan,
Casale Gabriele,
Borel Megan,
Iriondo Alexander,
Jepson Gilby
Publication year - 2020
Publication title -
tectonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.465
H-Index - 134
eISSN - 1944-9194
pISSN - 0278-7407
DOI - 10.1029/2019tc006050
Subject(s) - geology , metamorphic core complex , metamorphism , shear zone , metamorphic rock , orogeny , detachment fault , geochemistry , geochronology , muscovite , thrust fault , shear (geology) , biotite , paleontology , geomorphology , fault (geology) , quartz , extensional definition , tectonics
A microstructural and thermochronometric analysis of the Coyote Mountains detachment shear zone provides new insight into the collapse of the southern North American Cordillera. The Coyote Mountains is a metamorphic core complex that makes up the northern end of the Baboquivari Mountains in southern Arizona. The Baboquivari Mountains records several episodes of crustal shortening and thickening and regional metamorphism, including the Late Cretaceous‐early Paleogene Laramide orogeny which is locally expressed by the Baboquivari thrust fault. Thrusting and shortening were accompanied by magmatic activity recorded by intrusion of Paleocene muscovite‐biotite‐garnet peraluminous granites such as the ~58 Ma Pan Tak Granite, interpreted as anatectic melts representing the culmination of the Laramide orogeny. Following Laramide crustal shortening, the northern end of the Baboquivari Mountains was exhumed along a top‐to‐the‐north detachment shear zone, which resulted in the formation of the Coyote Mountains metamorphic core complex. Structural and microstructural analysis show that the detachment shear zone evolved under a strong component of noncoaxial (simple shear) deformation, at deformation conditions of ~450 ± 50°C, under a differential stress of ~60 MPa, and a strain rate of 1.5 × 10 −11 to 5.0 × 10 −13  s −1 at depth of ~11–14 km. Detailed 40 Ar/ 39 Ar geochronology of biotite and muscovite, in the context of the deformation conditions determined by quartz microstructures, suggests that the mylonitization associated with the formation of the Coyote Mountains metamorphic core complex started at ~29 Ma (early Oligocene). Apatite fission track ages indicate that the footwall of the Coyote Mountains metamorphic core complex experienced rapid exhumation to the upper crust by ~24 Ma. The fact that mylonitization and rapid extensional exhumation postdates Laramide thickening by ~30 Myr indicates that crustal thickness alone was insufficient to initiate extensional tectonic and required an additional driving force. The timing of mylonitization and rapid exhumation documented here and in other MCCs are consistent with the hypothesis that slab rollback and the effect of a slab window trailing the Mendocino Triple Junction have been critical in driving the development of the MCCs of the southwest.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here