z-logo
Premium
The Alichur Dome, South Pamir, Western India–Asia Collisional Zone: Detailing the Neogene Shakhdara–Alichur Syn‐collisional Gneiss‐Dome Complex and Connection to Lithospheric Processes
Author(s) -
Worthington James R.,
Ratschbacher Lothar,
Stübner Konstanze,
Khan Jahanzeb,
Malz Nicole,
Schneider Susanne,
Kapp Paul,
Chapman James B.,
Stevens Goddard Andrea,
Brooks Hanna L.,
Lamadrid Hector M.,
SteeleMacInnis Matthew,
Rutte Daniel,
Jonckheere Raymond,
Pfänder Jörg,
Hacker Bradley R.,
Oimahmadov Ilhomjon,
Gadoev Mustafo
Publication year - 2020
Publication title -
tectonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.465
H-Index - 134
eISSN - 1944-9194
pISSN - 0278-7407
DOI - 10.1029/2019tc005735
Subject(s) - geology , shear zone , foreland basin , gneiss , crust , mylonite , metamorphic core complex , dome (geology) , lithosphere , sinistral and dextral , rift , tectonics , geochemistry , paleontology , extensional definition , metamorphic rock
Neogene, syn‐collisional extensional exhumation of Asian lower–middle crust produced the Shakhdara–Alichur gneiss‐dome complex in the South Pamir. The <1 km‐thick, mylonitic–brittle, top‐NNE, normal‐sense Alichur shear zone (ASZ) bounds the 125 × 25 km Alichur dome to the north. The Shakhdara dome is bounded by the <4 km‐thick, mylonitic–brittle, top‐SSE South Pamir normal‐sense shear zone (SPSZ) to the south, and the dextral Gunt wrench zone to its north. The Alichur dome comprises Cretaceous granitoids/gneisses cut by early Miocene leucogranites; its hanging wall contains non/weakly metamorphosed rocks. The 22–17 Ma Alichur‐dome‐injection‐complex leucogranites transition from foliation‐parallel, centimeter‐ to meter‐thick sheets within the ASZ into discordant intrusions that may comprise half the volume of the dome core. Secondary fluid inclusions in mylonites and mylonitization‐temperature constraints suggest Alichur‐dome exhumation from 10–15 km depth. Thermochronologic dates bracket footwall cooling between ~410–130 °C from ~16–4 Ma; tectonic cooling/exhumation rates (~42 °C/Myr, ~1.1 km/Myr) contrast with erosion‐dominated rates in the hanging wall (~2 °C/Myr, <0.1 km/Myr). Dome‐scale boudinage, oblique divergence of the ASZ and SPSZ hanging walls, and dextral wrenching reflect minor approximately E–W material flow out of the orogen. We attribute broadly southward younging extensional exhumation across the central South Pamir between ~20–4 Ma to: (i) Mostly northward, foreland‐directed flow of hot crust into a cold foreland during the growth of the Pamir orocline; and (ii) Contrasting effects of basal shear related to underthrusting Indian lithosphere, enhancing extension in the underthrust South Pamir and inhibiting extension in the non‐underthrust Central Pamir.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here