Premium
Synthesis of Oceanic Crustal Structure From Two‐Dimensional Seismic Profiles
Author(s) -
Christeson G. L.,
Goff J. A.,
Reece R. S.
Publication year - 2019
Publication title -
reviews of geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.087
H-Index - 156
eISSN - 1944-9208
pISSN - 8755-1209
DOI - 10.1029/2019rg000641
Subject(s) - geology , crust , dike , oceanic crust , lava , lithology , seismology , hydrothermal circulation , petrology , boundary layer , seafloor spreading , geophysics , sediment , tectonics , volcano , geomorphology , subduction , physics , thermodynamics
Abstract We present a new synthesis of oceanic crustal structure from two‐dimensional seismic profiles to explore differences related to spreading rate and age. Primary results are as follows: (1) Layer 2 has an average thickness of 1.84 km but is thicker for young slow‐spreading crust and thinner for young superfast‐spreading crust. At faster‐spreading rates the layer 2/3 boundary likely corresponds to the lithologic boundary between dikes and gabbros. At slow‐spreading centers, the layer 2/3 boundary is interpreted to mark a change in porosity with depth within the dikes. (2) Total crustal thickness averages 6.15 km and is similar across all spreading rates. (3) Velocities at the top of layer 2 increase rapidly from 3.0 km/s at 0 Ma to 4.6 km/s at 10.5 Ma, with a slower increase to 5.0 km/s at 170 Ma. The rapid increase in velocity at young ages is attributed to crack closure by precipitation of hydrothermal alteration products; the increase at older ages suggests that this process persists as the oceanic crust evolves. (4) There is a correlation between velocities at the top of layer 2 and sediment thickness, with velocities of 5.8–5.9 km/s associated with a sediment thickness of 4.0–4.3 km. The thick sediment may collapse large‐scale features such as lava tubes and fractures. (5) Average velocities at the top of layer 3 are lower for young slow‐spreading and intermediate‐spreading oceanic crust (6.1–6.2 km/s) than for older or faster‐spreading oceanic crust (6.5–6.7 km/s). These low velocities are likely associated with faults penetrating into the sheeted dikes.