z-logo
Premium
Coral Records of Temperature and Salinity in the Tropical Western Pacific Reveal Influence of the Pacific Decadal Oscillation Since the Late Nineteenth Century
Author(s) -
Ramos R. D.,
Goodkin N. F.,
Siringan F. P.,
Hughen K. A.
Publication year - 2019
Publication title -
paleoceanography and paleoclimatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.927
H-Index - 127
eISSN - 2572-4525
pISSN - 2572-4517
DOI - 10.1029/2019pa003684
Subject(s) - pacific decadal oscillation , environmental science , climatology , sea surface temperature , oceanography , advection , salinity , la niña , el niño southern oscillation , geology , physics , thermodynamics
The Pacific Decadal Oscillation (PDO) is a complex aggregate of different atmospheric and oceanographic forcings spanning the extratropical and tropical Pacific. The PDO has widespread climatic and societal impacts, thus understanding the processes contributing to PDO variability is critical. Distinguishing PDO‐related variability is particularly challenging in the tropical Pacific due to the dominance of the El Niño–Southern Oscillation and influence of anthropogenic warming signals. Century‐long western Pacific records of subannual sea surface temperature (SST) and sea surface salinity (SSS), derived from coral Sr/Ca and δ 18 O profiles, respectively, allow for evaluating different climatic sensitivities and identifying PDO‐related variability in the region. The summer Sr/Ca‐SST record provides evidence of a significant SST increase, likely tied to greenhouse gas emissions. Anthropogenic warming is masked in the winter Sr/Ca‐SST record by interannual to multidecadal scale changes driven by the East‐Asian Winter Monsoon and the PDO. Decadal climate variability during winter is strongly correlated to the PDO, in agreement with other PDO records in the region. The PDO also exerts influence on the SSS difference between the dry and wet season coral δ 18 O (δ 18 O c )‐SSS records through water advection. The PDO and El Niño–Southern Oscillation constructively combine to enhance/reduce advection of saline Kuroshio waters at our site. Overall, we are able to demonstrate that climate records from a tropical reef environment significantly capture PDO variability and related changes over the period of a century. This implies that the tropical western Pacific is a key site in understanding multifrequency climate variability, including its impact on tropical climate at longer timescales.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here