Premium
Modeling Spatial Heterogeneity in Surface Turbulent Heat Flux in the U.S. Southern Great Plains
Author(s) -
Williams Ian N.,
Lee Jungmin M.,
Tadić Jovan,
Zhang Yunyan,
Chu Housen
Publication year - 2020
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1029/2019jd032255
Subject(s) - latent heat , environmental science , sensible heat , leaf area index , spatial heterogeneity , vegetation (pathology) , mesoscale meteorology , flux (metallurgy) , atmospheric sciences , normalized difference vegetation index , transpiration , spatial variability , climatology , meteorology , geology , geography , mathematics , medicine , ecology , materials science , photosynthesis , botany , pathology , metallurgy , biology , statistics
Advances in numerical modeling of cloud dynamics are driving a need for improved land model prediction at convective storm scales. In this study, satellite and ground‐based vegetation remote sensing data were combined with land model experiments to more accurately characterize land surface spatial heterogeneity in the Community Land Model (CLM4.0). The new subgrid classification of plant functional types (PFT) and leaf area index (LAI) enables consistent comparison between models and ground‐based flux measurements in the U.S. southern Great Plains. Errors in vegetation data sets (inferred from comparison between 250 m satellite and ground‐based LAI), while large, had less impact on the simulated characteristics of spatial heterogeneity compared to errors in model representation of surface energy partitioning (between latent and sensible heat flux) and its relationship to LAI. Predicted spatial heterogeneity in surface energy partitioning was enhanced after replacing soil and stomatal resistance parameters with a new set that better predicts the observed relationship to LAI. These modifications increase the number of smaller (mesoscale) dry land patches having higher sensible heat flux. The parameter experiments suggest that vegetation state and processes (transpiration) act to broaden the size spectrum of surface heat flux heterogeneity, which can influence clouds and convective initiation. Moreover, improvements in vegetation input data and model parameters had partially compensating effects on surface flux heterogeneity, indicating the importance of evaluating input data and parameterizations together to improve prediction at higher spatial resolutions.