Premium
A Global Survey of Apparent Aerosol‐Cloud Interaction Signals
Author(s) -
Oreopoulos Lazaros,
Cho Nayeong,
Lee Dongmin
Publication year - 2020
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1029/2019jd031287
Subject(s) - aerosol , environmental science , cloud computing , atmospheric sciences , moderate resolution imaging spectroradiometer , morning , meteorology , radiative transfer , climatology , cloud albedo , precipitation , cloud fraction , cloud cover , cloud top , geography , geology , physics , satellite , computer science , operating system , quantum mechanics , astronomy
We update and expand analysis of the apparent responses to aerosol variations of the planet's cloud regimes seen by the Moderate Resolution Imaging Spectroradiometer (MODIS). We distinguish between morning aerosol loadings and afternoon clouds and consider local scales explicitly. Aerosol loading is represented by gridded aerosol optical depth (AOD) from either MODIS or a reanalysis data set, while cloud information comes exclusively from MODIS. The afternoon cloud affected quantities (CAQs) examined in conjunction with morning AOD include precipitation and cloud radiative effect, in addition to cloud properties. One analysis thrust focuses on calculating global means distinguished by morning cloud regime, of afternoon CAQs, for distinct percentiles of grid cell seasonal morning AOD distributions. When the dependence of these global means on AOD is examined, we find persistent increases in cloud radiative fluxes with AOD as predicted by classic aerosol‐cloud interaction paradigms, and also deviations from expected cloud responses, especially for precipitation. The other analysis thrust involves calculations at 1° scales of logarithmic CAQ sensitivities to AOD perturbations, approximated by linear regression slopes for distinct morning cloud regime groups. While the calculations are fundamentally local, we concentrate on the prevailing sensitivity signs in statistics of the slopes at global scales. Results from this second analysis approach indicate CAQ directions of change with AOD that are largely consistent with the first approach. When using a rather simple methodology where meteorological variables are treated as if they were CAQs, no conclusive results on the potential influence of meteorology on our findings are inferred.