z-logo
Premium
Statistical Modeling of Tidal Weather in the Mesosphere and Lower Thermosphere
Author(s) -
Vitharana Ashan,
Zhu Xuwen,
Du Jian,
Oberheide Jens,
Ward William E.
Publication year - 2019
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1029/2019jd030573
Subject(s) - environmental science , thermosphere , meteorology , autoregressive model , statistical model , climatology , atmospheric sciences , mathematics , statistics , ionosphere , geography , geology , geophysics
We study the statistical properties of tidal weather (variability period <30 days) of DW1 amplitude using the extended Canadian Middle Atmospheric Model (eCMAM) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). A hierarchy of statistical models, for example, the autoregressive (AR), vector AR, and parsimonious vector AR models, are built to predict tidal weather. The quasi 23‐day oscillation found in the tidal weather is a key parameter in the statistical models. Comparing to the more complex vector AR and parsimonious vector AR models, which consider the spatial correlations of tidal weather, the simplest AR model can predict one‐day tidal weather with an accuracy of 89% ( R 2 : correlation coefficient squared). In the AR model, 23 coefficients at each latitude and height are obtained from seven years of eCMAM data. Tidal weather is predicted via a linear combination of 23 days of tidal weather data prior to the prediction day. Different sensitivity tests are performed to prove the robustness of these coefficients. These coefficients obtained from eCMAM are in very good agreement with those from SABER. SABER tidal weather is predicted with an accuracy of 86% and 87% at one day by the AR models with coefficients from eCMAM and SABER, respectively. The five‐day forecast accuracy is between 60 and 65%.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here