z-logo
Premium
ISOW Spreading and Mixing as Revealed by Deep‐Argo Floats Launched in the Charlie‐Gibbs Fracture Zone
Author(s) -
Racapé Virginie,
Thierry Virginie,
Mercier Herlé,
Cabanes Cécile
Publication year - 2019
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1029/2019jc015040
Subject(s) - argo , geology , oceanography , water mass , north atlantic deep water , neutral buoyancy , fracture zone , deep water , current (fluid) , boundary current , deep sea , salinity , thermohaline circulation , gulf stream , climatology , ocean current , fishery , biology
Abstract To improve our understanding of deep circulation, we deployed five Deep‐Argo floats (0–4,000 m) in the Charlie‐Gibbs Fracture Zone (CGFZ), which channels the flow of Iceland‐Scotland Overflow Water (ISOW), a dense water mass of the North Atlantic Ocean. The floats were programed to drift at 2,750 dbar in the ISOW layer. The floats mainly moved westward in the CGFZ, although some of them followed different routes for few cycles depending on northward intrusions of the North Atlantic Current over the CGFZ. One float revealed a direct route for ISOW from CGFZ to the Deep Western Boundary Current at Flemish Cap. In the CGFZ, oxygen data acquired by the floats revealed that the ISOW layer, characterized by salinity higher than 34.94 and density greater than 27.8 kg/m, was mainly composed of the highly oxygenated ISOW and the less oxygenated North East Atlantic Deep Water (NEADW), a complex water mass from the East Atlantic. In the ISOW layer, the relative contribution of ISOW was generally larger in the northern valley than in the southern valley of CGFZ. Northward intrusions of the North Atlantic Current above the CGFZ increased the relative contribution of NEADW in the northern valley and favors mixing between ISOW and NEADW. The ISOW‐NEADW signal flowing westward from the CGFZ toward the Deep Western Boundary Current was progressively diluted by Labrador Sea Water and Denmark Strait Overflow Water. Oxygen measurements from Deep‐Argo floats are essential for a better understanding and characterization of the mixing and spreading of deep water masses.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here