Premium
A Multiple Algorithm Approach to the Analysis of GNSS Coordinate Time Series for Detecting Geohazards and Anomalies
Author(s) -
Habboub Mohammed,
Psimoulis Panos A.,
Bingley Richard,
Rothacher Markus
Publication year - 2020
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.983
H-Index - 232
eISSN - 2169-9356
pISSN - 2169-9313
DOI - 10.1029/2019jb018104
Subject(s) - gnss applications , algorithm , computer science , coordinate system , series (stratigraphy) , coordinate time , geodesy , time series , global positioning system , artificial intelligence , geology , telecommunications , paleontology , machine learning
In this study, a multiple algorithm approach to the analysis of GNSS coordinate time series for detecting geohazards and anomalies is proposed. This multiple algorithm approach includes the novel use of spatial and temporal analyses. In the spatial analysis algorithm, the spatial autoregressive model was used, assuming that the GNSS coordinate time series from a network of stations are spatially dependent. Whereas in the temporal analysis algorithm, it is assumed that the GNSS coordinate time series of a single station is temporally dependent and an artificial neural network is used to extract this dependency as a nonparametric model. This multiple algorithm approach was examined using (i) the BIGF network of GNSS stations in the British Isles and (ii) the GNSS stations of the GEONET network in Japan for the Tohoku‐Oki 2011 Mw9.0 earthquake. It was demonstrated in these case studies that this multiple algorithm approach can be used to detect the effect of a geohazard such as an earthquake on the GNSS network coordinate time series and to detect regional anomalies in the GNSS coordinate time series of a network. The spatial analysis algorithm seemed to be more suitable to detect coordinate offsets in the low‐frequency component and/or variations in the long‐term trends of the GNSS coordinate time series, while it is less reliable in detecting sudden large magnitude coordinate offsets due to earthquakes, as the effects at one station propagate to nearby stations. In contrast, the temporal analysis algorithm detects coordinate offsets in the high‐frequency component which makes it effective in detecting sudden large coordinate offsets in the GNSS coordinate time series such as those due to earthquakes. Thus, it was shown the complementary of the temporal and spatial analysis algorithms and their successful application for the magnitude and frequency content of the anomalies in the two case studies.