Premium
Frequency‐Dependent Behavior of Zonal Jet Variability
Author(s) -
Lindgren Erik A.,
Sheshadri Aditi,
Plumb R. Alan
Publication year - 2020
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2019gl086585
Subject(s) - extratropical cyclone , baroclinity , storm track , middle latitudes , storm , climatology , jet (fluid) , decoupling (probability) , geology , atmospheric sciences , geophysics , meteorology , physics , mechanics , control engineering , engineering
Recent work suggests that storm track diagnostics such as eddy heat fluxes and eddy kinetic energies have very small signatures in the first annular mode of zonal mean zonal wind, suggesting a lack of co‐variability between the locations of the extratropical jet and storm tracks. The frequency‐dependence of this apparent decoupling is explored in ERA‐Interim reanalysis data. The annular modes show similar spatial characteristics in the different frequency ranges considered. Cancellation between the signatures of storm track diagnostics in the leading low‐pass and high‐pass filtered annular modes is evident, partly explaining their small signature in the total. It is shown that at timescales greater than 30 days, the first zonal wind mode describes latitudinal shifts of both the midlatitude jet and its associated storm tracks, and it appears that the persistence of zonal wind anomalies is sustained primarily by a baroclinic feedback.