Premium
Global K‐Pg Layer Deposited From a Dust Cloud
Author(s) -
Artemieva Natalia,
Morgan Joanna
Publication year - 2020
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2019gl086562
Subject(s) - ejecta , geology , plume , impact crater , lava , astrobiology , atmospheric sciences , geophysics , physics , meteorology , astrophysics , geochemistry , volcano , supernova
Although it is widely agreed that the distal K‐Pg clay layer contains ejecta from the Chicxulub impact site, no current models can explain how these ejecta travel from the impact site around the globe. A widely accepted hypothesis is that impact spherules and shocked minerals in the layer were ejected from an expanding impact plume and traveled to their final destination on a ballistic path. Shocked minerals, however, are ejected at too low a velocity to reach distal sites, and plausible ballistic ejection models cannot explain the observed ejecta distribution. Using a suite of numerical simulations, we find that intense interactions between the ejecta curtain and atmosphere generate a fast‐moving dust cloud traveling at speeds of a few kilometers per second, which carries a substantial fraction of ejecta, including shocked minerals, to distal sites. We conclude that ejecta curtain material must make a major contribution to the formation of the distal K‐Pg layer.