z-logo
Premium
Stochastic, Empirically Informed Model of Landscape Dynamics and Its Application to Deforestation Scenarios
Author(s) -
Nowosad J.,
Stepinski T. F.
Publication year - 2019
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2019gl085952
Subject(s) - deforestation (computer science) , mesoscale meteorology , sustainability , agriculture , land use, land use change and forestry , geography , environmental science , ecology , computer science , meteorology , archaeology , biology , programming language
Land change including deforestation undermines the sustainability of the environment. Using data on 1992–2015 pattern change in over 1.7 million mesoscale landscapes worldwide we developed a stochastic model of long‐term landscape dynamics. The model suggests that observed heterogeneous landscapes are short‐lived stages in a transition between quasi‐stable homogeneous landscapes of different themes. As a case study we used Monte Carlo simulations based on our model to derive a probability distribution for evolutionary scenarios of landscapes that undergo a forest‐to‐agriculture transit, a prevalent element of deforestation. Results of simulations show that most likely and the fastest deforestation scenario is through the sequence of highly aggregated forest/agriculture mosaics with a decreasing share of the forest. Simulations also show that once forest share drops below 50% the remainder of the transit is rapid. This suggests that possible conservation policy is to protect mesoscale tracts of land before the forest share drops below 50%.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom