Premium
Pacific Meridional Mode‐Western North Pacific Tropical Cyclone Linkage Explained by Tropical Pacific Quasi‐Decadal Variability
Author(s) -
Liu Chao,
Zhang Wenjun,
Stuecker Malte F.,
Jin FeiFei
Publication year - 2019
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2019gl085340
Subject(s) - climatology , pacific decadal oscillation , tropical cyclone , predictability , sea surface temperature , zonal and meridional , geology , environmental science , atmospheric sciences , oceanography , physics , quantum mechanics
Previous studies argued that the Pacific Meridional Mode (PMM) impacts tropical cyclone (TC) genesis variability over the southeastern part of the western North Pacific (SE‐WNP). Here, we find that the statistical relationship between PMM and SE‐WNP TC genesis frequency is dominated by their co‐variability on decadal timescales. The decadal component of the PMM exhibits very similar temporal and spatial features to quasi‐decadal tropical Pacific sea surface temperature (SST) variability. The latter can affect SE‐WNP TC activity via changes in both zonal vertical wind shear and low‐level vorticity. In contrast, the interannual component of the PMM exhibits no statistically significant correlation with SE‐WNP TC genesis. Furthermore, observations show that both interannual and decadal variability of SE‐WNP TC activity are well correlated with the commonly used Niño3.4 El Niño‐Southern Oscillation index. Thus, equatorial Pacific SST variability is the dominant source of SE‐WNP TC activity predictability on different timescales.