Premium
Areal Models for Spatially Coherent Trend Detection: The Case of British Peak River Flows
Author(s) -
Prosdocimi Ilaria,
Dupont Emiko,
Augustin Nicole H.,
Kjeldsen Thomas R.,
Simpson Dan P.,
Smith Theresa R.
Publication year - 2019
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2019gl085142
Subject(s) - statistic , trend analysis , focus (optics) , climate change , series (stratigraphy) , change detection , variable (mathematics) , environmental science , sort , econometrics , geography , statistics , climatology , physical geography , computer science , remote sensing , geology , mathematics , database , oceanography , paleontology , mathematical analysis , physics , optics
With increasing concerns on the impacts of climate change, there is wide interest in understanding whether hydrometric and environmental series display any sort of trend. Many studies however, focus on the analysis of highly variable individual series at each measuring location. We propose a novel and straightforward approach to trend detection, modelling the test statistic for trend at each location via an areal model in which the information across measuring locations is pooled together. We exemplify the method with a detailed study of change in high flows in Great Britain. Using areal models, we detect a statistically relevant signal for a positive trend across Great Britain in the recent decades. This evidence is also found when different temporal subsets of the records are analysed. Further, the model identifies areas where the increase has been higher or lower than average, thus providing a way to prioritise intervention.