Premium
The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters
Author(s) -
Brewer Peter G.,
Peltzer Edward T.
Publication year - 2019
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2019gl085117
Subject(s) - seawater , kinetic energy , thermodynamics , hydrogen , thermal energy , molecule , hydrogen bond , materials science , chemistry , physics , oceanography , geology , organic chemistry , quantum mechanics
The high heat capacity of seawater has been cited as why 93% of the heat trapped by anthropogenic greenhouse gases is absorbed by the ocean. Specific heats (C P ) are closely tied to molecular weight. The mean molecular weight of pure water over the range 0–40 °C is 86.1–80.7 and 89.4–84.5 for seawater. Warming of water increases the kinetic energy of the molecules and induces breaking of hydrogen bonds (8.364 kJ/mol); both effects increase the volume of the fluid. Warming pure water from 0–10 °C increases the single H 2 O molecular form by 1.64%, accounting for 36.3% of the energy consumed. The specific heat of pure water is thus attributable (63.7%) to increasing the kinetic energy of the water, and (36.3%) to the energy required to break hydrogen bonds. For seawater, 34.7% of the energy goes to breaking hydrogen bonds while the rest (65.3%) is attributable to increasing the kinetic energy of the molecules.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom