z-logo
Premium
High‐Energy (>10 MeV) Oxygen and Sulfur Ions Observed at Jupiter From Pulse Width Measurements of the JEDI Sensors
Author(s) -
Westlake J. H.,
Clark G.,
Haggerty D. K.,
Jaskulek S. E.,
Kollmann P.,
Mauk B. H.,
Mitchell D. G.,
Nelson K. S.,
Paranicas C. P.,
Rymer A. M.
Publication year - 2019
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2019gl083842
Subject(s) - jupiter (rocket family) , jovian , atmosphere of jupiter , ion , physics , atomic physics , oxygen , atmosphere (unit) , astrophysics , astronomy , planet , saturn , meteorology , quantum mechanics , space shuttle
The Jovian polar regions produce X-rays that are characteristic of very energetic oxygen and sulfur that become highly charged on precipitating into Jupiter's upper atmosphere. Juno has traversed the polar regions above where these energetic ions are expected to be precipitating revealing a complex composition and energy structure. Energetic ions are likely to drive the characteristic X-rays observed at Jupiter (Haggerty et al., 2017, https://doi.org/10.1002/2017GL072866; Houston et al., 2018, https://doi.org/10.1002/2017JA024872; Kharchenko et al., 2006, https://doi.org/10.1029/2006GL026039). Motivated by the science of X-ray generation, we describe here Juno Jupiter Energetic Particle Detector Instrument (JEDI) measurements of ions above 1 MeV and demonstrate the capability of measuring oxygen and sulfur ions with energies up to 100 MeV. We detail the process of retrieving ion fluxes from pulse width data on instruments like JEDI (called "puck's"; Clark, Cohen, et al., 2016, https://doi.org/10.1002/2017GL074366; Clark, Mauk, et al., 2016, https://doi.org/10.1002/2015JA022257; Mauk et al., 2013, https://doi.org/10.1007/s11214-013-0025-3) as well as details on retrieving very energetic particles (>20 MeV) above which the pulse width also saturates.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here