Premium
Ligand Binding Strength Explains the Distribution of Iron in the North Atlantic Ocean
Author(s) -
Pham Anh L. D.,
Ito Takamitsu
Publication year - 2019
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2019gl083319
Subject(s) - scavenging , biogeochemistry , ligand (biochemistry) , deposition (geology) , environmental chemistry , environmental science , oceanography , atmospheric sciences , geology , chemistry , receptor , paleontology , sediment , biochemistry , antioxidant
Abstract Observations of dissolved iron (dFe) in the subtropical North Atlantic revealed remarkable features: While the near‐surface dFe concentration is low despite receiving high dust deposition, the subsurface dFe concentration is high. We test several hypotheses that might explain this feature in an ocean biogeochemistry model with a refined Fe cycling scheme. These hypotheses invoke a stronger lithogenic scavenging rate, rapid biological uptake, and a weaker binding between Fe and a ubiquitous, refractory ligand. While the standard model overestimates the surface dFe concentration, a 10‐time stronger biological uptake run causes a slight reduction in the model surface dFe. A tenfold decrease in the binding strength of the refractory ligand, suggested by recent observations, starts reproducing the observed dFe pattern, with a potential impact for the global nutrient distribution. An extreme value for the lithogenic scavenging rate can also match the model dFe with observations, but this process is still poorly constrained.