z-logo
Premium
Numerical Modeling of the Propagation of Infrasonic Acoustic Waves Through the Turbulent Field Generated by the Breaking of Mountain Gravity Waves
Author(s) -
Sabatini R.,
Snively J. B.,
Bailly C.,
Hickey M. P.,
Garrison J. L.
Publication year - 2019
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2019gl082456
Subject(s) - gravity wave , infrasound , turbulence , thermosphere , physics , acoustic wave , gravitational wave , wave propagation , stratosphere , breaking wave , geophysics , acoustics , geology , meteorology , optics , ionosphere , astrophysics
The nonlinear propagation of low‐frequency acoustic waves through the turbulent fluctuations induced by breaking mountain gravity waves is investigated via 2‐D numerical simulations of the Navier‐Stokes equations, to understand the effects of atmospheric dynamics on ground‐based infrasound measurements. Emphasis is placed on acoustic signals of frequency around 0.1 Hz, traveling through tens‐of‐kilometers‐scale gravity waves and subkilometer‐scale turbulence. The sensitivity of the infrasonic phases to small‐scale fluctuations is found to depend on the altitudes through which they are refracted toward the Earth. For the considered cases, the dynamics in the stratosphere impact the refracting acoustic waves to a greater extent than those in the thermosphere. This work clearly demonstrates the need for accurate descriptions of the effects of atmospheric dynamics on acoustic propagation, such as here captured by the full set of fluid dynamic equations, as well as of the subsequent effects on measured signals.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here