z-logo
open-access-imgOpen Access
The Sensitivity of Joint Inversions of Seismic and Geodynamic Data to Mantle Viscosity
Author(s) -
Lu Chang,
Forte Alessandro M.,
Simmons Nathan A.,
Grand Stephen P.,
Kajan Marie N.,
Lai Hongyu,
Garnero Edward J.
Publication year - 2020
Publication title -
geochemistry, geophysics, geosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.928
H-Index - 136
ISSN - 1525-2027
DOI - 10.1029/2019gc008648
Subject(s) - geology , seismic tomography , mantle (geology) , geophysics , scaling , geodynamics , seismology , tectonics , geometry , mathematics
Seismic tomography has revealed the existence of large‐scale velocity heterogeneities in the mantle. The interpretation of seismic velocity anomalies in terms of temperature and chemical composition is nonunique. We use geodynamic observations including gravity, plate motions, dynamic topography, and excess ellipticity of the core‐mantle boundary combined with seismic observations to investigate the thermo‐chemical structure of the mantle through joint inversions. An outstanding issue, however, is the physical connection between mantle density anomalies and the surface geodynamic observations, which requires knowledge of the mantle viscosity structure. Here we perform joint inversions assuming different viscosity profiles and examine the dependence of the results on the viscosity. We first assume that mantle heterogeneity is due to thermal variations, which places a constraint on the relation between seismic velocity and density, and we subsequently relax the constraint to allow for potential nonthermal effects. In all of our joint inversions, a nonthermal origin of density anomalies is required to explain the geodynamic data, though the amount varies with the assumed viscosity structure. A common observation is a high‐density chemical signal in the center of the large low‐shear‐velocity provinces at the base of the mantle resulting in a near neutral or slightly dense overall buoyancy there. Using the derived density models and their corresponding viscosity profiles, we also calculate instantaneous mantle flow fields. The predicted flow fields derived from joint inversions are generally similar but are quite different from flow fields using density models derived from a posteriori scaling of pure seismic tomography models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here