
Ge/Si Partitioning in Igneous Systems: Constraints From Laser Ablation ICP‐MS Measurements on Natural Samples
Author(s) -
He Detao,
Lee CinTy A.,
Yu Xun,
Farner Michael
Publication year - 2019
Publication title -
geochemistry, geophysics, geosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.928
H-Index - 136
ISSN - 1525-2027
DOI - 10.1029/2019gc008514
Subject(s) - geology , plagioclase , hornblende , geochemistry , olivine , biotite , fractional crystallization (geology) , pyroxene , anorthosite , igneous differentiation , felsic , mineralogy , mafic , basalt , quartz , paleontology
Mineral/melt and intermineral Ge/Si exchange coefficients for nine common rock‐forming silicate minerals were determined by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA‐ICP‐MS). Ge/Si mineral/melt exchange coefficients were found to vary by up to a factor of 10. In mafic and ultramafic systems, Ge/Si mineral/melt exchange coefficients are less than 1 for plagioclase (0.48) and olivine (0.72), close to 1 for clinopyroxene (1.17) and orthopyroxene (1.07), and greater than 1 for garnet (2.69). In felsic and silicic systems, the Ge/Si mineral/melt exchange coefficient is less than 1 for quartz (0.23), plagioclase (0.67), and potassium feldspar (0.67) but much greater than 1 for biotite (4.80) and hornblende (3.95). We show that early, olivine‐dominated fractionation of primitive basalts does not fractionate Ge/Si significantly, but subsequent cotectic crystallization of plagioclase and pyroxene can increase the Ge/Si ratio from 6 × 10 −6 to 7 × 10 −6 . We show that the only way to decrease Ge/Si during magmatic differentiation is by crystallization of hornblende or biotite (though biotite is typically a late crystallizing phase), consistent with hornblende being a major fractionating phase in hydrous intermediate magmas. The high compatibility of Ge in hornblende makes this element, in conjunction with Si, a potentially useful approach for distinguishing between hornblende and garnet in the source regions of intermediate magmas. The high compatibility of Ge in micas suggests that Ge/Si systematics may also be useful in understanding the origin of ultrapotassic magmas, which are often thought to derive from phlogopite‐rich sources.