
Reaction Between Mid‐Ocean Ridge Basalt and Lower Oceanic Crust: An Experimental Study
Author(s) -
Yang Alexandra Yang,
Wang Chunguang,
Liang Yan,
Lissenberg C. Johan
Publication year - 2019
Publication title -
geochemistry, geophysics, geosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.928
H-Index - 136
ISSN - 1525-2027
DOI - 10.1029/2019gc008368
Subject(s) - plagioclase , olivine , geology , basalt , geochemistry , melt inclusions , incompatible element , oceanic crust , mid ocean ridge , crust , fractional crystallization (geology) , partial melting , mineralogy , seismology , tectonics , paleontology , quartz , subduction
Reaction between mid‐ocean ridge basalt (MORB) and crystal mush in the lower oceanic crust has been invoked to explain chemical variations of both MORB and minerals in the lower oceanic crust. Nonetheless, such reactions have been little studied experimentally. We conducted experiments to investigate the mechanisms and chemical consequences of melt‐mush interaction by reacting molten MORB with troctolite at 0.5 GPa. Isothermal experiments demonstrate that melt infiltrates into troctolite with dissolution of plagioclase and olivine. The reacted melts have higher MgO and Al 2 O 3 and lower TiO 2 and Na 2 O contents and crystallize more primitive olivine and plagioclase compared to those crystallized from the unreacted melts, suggesting melt‐mush reaction could result in the formation of high‐Al basalt. The melt compositional variations induced by reaction also significantly affect the calculated pressures for MORB fractionation, indicating that major element‐based barometers for MORB fractionation can only be used reliably if reaction can be ruled out. After reaction, the troctolite contains olivine with plagioclase inclusions and poikilitic clinopyroxene with partially resorbed olivine and plagioclase chadacrysts, indicating that melt‐mush interaction occurs through dissolution‐reprecipitation mechanisms. Clinopyroxene has high Mg# (>83) and elevated Na 2 O and TiO 2 contents, and olivine has different Fo versus Ni correlations from fractional crystallization models, which provide testable parameters for the effect of melt‐mush reaction in the rock record. By comparison with samples from lower oceanic crust and layered intrusions, we propose that melt‐mush reaction plays an important role during magma transport in the crystal mush in both oceanic and continental magma systems.