Premium
Compensatory Thermal Adaptation of Soil Microbial Respiration Rates in Global Croplands
Author(s) -
Ye JianSheng,
Bradford Mark A.,
Maestre Fernando T.,
Li FengMin,
GarcíaPalacios Pablo
Publication year - 2020
Publication title -
global biogeochemical cycles
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.512
H-Index - 187
eISSN - 1944-9224
pISSN - 0886-6236
DOI - 10.1029/2019gb006507
Subject(s) - environmental science , soil carbon , carbon cycle , ecosystem , respiration , biomass (ecology) , climate change , biogeochemical cycle , soil respiration , ecology , adaptation (eye) , terrestrial ecosystem , atmospheric sciences , soil water , soil science , biology , botany , neuroscience , geology
Understanding whether soil microbial respiration adapts to the ambient thermal climate with an enhanced or compensatory response, hence potentially stimulating or slowing down soil carbon losses with warming, is key to accurately forecast and model climate change impacts on the global carbon cycle. Despite the interest in this topic and the plethora of recent studies in natural ecosystems, it has been seldom explored in croplands. Using two recently published independent datasets of soil microbial metabolic quotient (MMQ; microbial respiration rate per unit biomass) and carbon use efficiency (CUE; partitioning of C to microbial growth vs. respiration), we find a compensatory thermal adaptive response for MMQ in global croplands. That is, mean annual temperature (MAT) has a negative effect on MMQ. However, this compensatory thermal adaptation is only half or less of that found in previous studies for noncultivated ecosystems. In contrast to the negative MMQ‐MAT pattern, microbial CUE increases with MAT across global croplands. By incorporating this positive CUE‐MAT relationship (greater C partitioning into microbial growth rather than respiration with increasing temperature) into a microbial‐explicit soil organic carbon model, we successfully predict the thermal compensation of MMQ observed in croplands. Our model‐data integration and database cross‐validation suggest that a warmer climate may select for microbial communities with higher CUE, providing a plausible mechanism for their compensatory metabolic response. By helping to identify appropriate representations of microbial physiological processes in soil biogeochemical models, our work will help build confidence in model projections of cropland C dynamics under a changing climate.