z-logo
Premium
Seasonal and Interannual Patterns and Controls of Hydrological Fluxes in an Amazon Floodplain Lake With a Surface‐Subsurface Process Model
Author(s) -
Ji Xinye,
Lesack Lance F. W.,
Melack John M.,
Wang Shilong,
Riley William J.,
Shen Chaopeng
Publication year - 2019
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2018wr023897
Subject(s) - floodplain , hydrology (agriculture) , environmental science , drainage basin , precipitation , amazon rainforest , surface water , water cycle , water level , geology , ecology , geography , meteorology , geotechnical engineering , cartography , environmental engineering , biology
Floodplain lakes represent important aquatic ecosystems, and field‐based estimates of their water budgets are difficult to obtain, especially over multiple years. We examine the hydrological fluxes for an Amazon floodplain lake connected to the Solimões River using a process‐based hydrologic model. Water exchanges between the river and lake agree well with field estimates, including the timing of different hydrological phases. However, beyond available field data, modeling results show that the seven simulated years all differed from each other. These interannual differences were caused by the interplay between phases when water levels were rising with river‐water flowing into the lake (RWRI), versus rising with lake‐water flowing out to the river (RWLO). This exchange determines the river‐water content in the lake ( C L ). Maximum C L occurred before river levels peaked because local catchment contributions can be sufficient to push lake‐water out to the river, even as river levels rise. Numerical experiments show that the seasonal distribution of local rainfall, local catchment size, and interannual variability in both climate and river stage can contribute to differing dynamics of C L in a floodplain lake. Their impacts vary among phases: river‐rise dominates the RWRI, whereas local hydrological processes dominate the RWLO and receding‐water phases. Intermediate‐to‐long‐term rainfall accumulation controls C L during the RWLO phase, whereas annual precipitation accumulation is important for C L during low water. Our model generalizes beyond limited available field studies and offers potential to better understand floodplain lakes in other areas and how regional versus local changes in climate may affect their hydrological dynamics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here