Premium
High‐Resolution Modeling of Reservoir Release and Storage Dynamics at the Continental Scale
Author(s) -
Shin Sanghoon,
Pokhrel Yadu,
MiguezMacho Gonzalo
Publication year - 2019
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2018wr023025
Subject(s) - floodplain , hydrology (agriculture) , environmental science , flood myth , digital elevation model , water storage , scale (ratio) , bathymetry , elevation (ballistics) , routing (electronic design automation) , hydrological modelling , geology , remote sensing , climatology , geomorphology , oceanography , computer science , geography , geotechnical engineering , computer network , cartography , archaeology , geometry , mathematics , inlet
Manmade reservoirs are important components of the terrestrial water balance. Thus, considering the hydro‐climatic effects of reservoirs is important in water cycle studies at a river basin to global scales; yet, reservoirs are represented poorly in large‐scale hydrological and climate models. Here we present a high‐resolution (5 km) continental‐scale reservoir storage dynamics and release scheme by enhancing existing schemes and adding critical novel parameterizations to improve reservoir storage and release simulations. The new scheme simulates river‐floodplain‐reservoir storages in an integrated manner considering their spatial and temporal variations. A new calibration scheme is also incorporated to better simulate reservoir dynamics considering cascade‐reservoir effects. Further, since no reservoir bathymetry data are available over large domains, we use a state‐of‐the‐art digital elevation model and reservoir extent data to derive reservoir bed elevation. The new scheme is integrated within the river‐floodplain routing scheme of a continental hydrological model LEAF‐Hydro‐Flood. Results from the simulation of ~1,900 reservoirs within the contiguous United States suggest that the model well captures the observed reservoir storage‐release dynamics. Comparison of our results with those from the existing schemes suggest a significant improvement; importantly, the new scheme reduces the excessive and frequent reservoir overfilling and underfilling. Comparison of results with satellite‐based surface water data shows that the model accurately reproduces the large‐scale patterns of reservoir‐floodplain inundation extents. It is expected that the results of this study will inform the incorporation of reservoirs in hyper‐resolution models to improve simulations of terrestrial water storage and flow and examine reservoir‐atmosphere interactions over large domains.