z-logo
Premium
Development of Multivariable Dynamic System Response Curve Method for Real‐Time Flood Forecasting Correction
Author(s) -
Sun Y.,
Bao W.,
Jiang P.,
Ji X.,
Gao S.,
Xu Y.,
Zhang Q.,
Si W.
Publication year - 2018
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2018wr022555
Subject(s) - autoregressive model , computer science , state variable , variable (mathematics) , algorithm , statistics , mathematics , mathematical analysis , physics , thermodynamics
Error correction method is widely used to improve the performance of flood forecasting. The Dynamic System Response Curve method (DSRC) has been proposed as an error correction method to improve the performance of hydrological modeling. One of the critical problems is the unstable performance caused by the ill‐posed property of the model structure and the inability of estimating multiple variables. To address this problem, the original structure of DSRC was modified to enable the capability of estimating multiple variables. Using the variable forgetting factor recursive least squares algorithm (VFF‐RLS), we proposed an improved version of DSRC (VFF‐RLS‐MDSRC). The proposed method was tested in a synthetic case to examine the ability to correct state variables of a hydrological model. In addition, it was compared with the autoregressive technique in a real case study to evaluate the effects on the improvement of model performance. The results of the synthetic study indicate that the proposed method can significantly improve the performance of both the model output and the state variables. The results of the real case study indicate that the performance obtained by the proposed method tends to have a slower decline trend when increasing the lead time compared with autoregressive technique.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here