z-logo
Premium
Next‐Generation Sequencing to Identify Lacustrine Haptophytes in the Canadian Prairies: Significance for Temperature Proxy Applications
Author(s) -
Plancq Julien,
Couto Jillian M.,
Ijaz Umer Z.,
Leavitt Peter R.,
Toney Jaime L.
Publication year - 2019
Publication title -
journal of geophysical research: biogeosciences
Language(s) - English
Resource type - Journals
eISSN - 2169-8961
pISSN - 2169-8953
DOI - 10.1029/2018jg004954
Subject(s) - haptophyte , proxy (statistics) , biology , algae , environmental science , ecology , nutrient , phytoplankton , machine learning , computer science
Abstract The Great Plains of North America often experience prolonged droughts that have major economic and environmental impacts. Temperature reconstructions are thus crucial to help decipher the mechanisms responsible for drought occurrences. Long‐chain alkenones (LCAs), lipids produced by three major phylogenetic groups (Groups I, II, and III) of haptophyte algae within the order Isochrysidales, are increasingly used for temperature reconstructions in lacustrine settings. However, to select the most appropriate calibration of the LCA‐based temperature proxy, it is first essential to identify the LCA‐producing haptophyte species present. Here we used next‐generation sequencing to target the 18S rRNA haptophyte gene from sediments with distinct LCA profiles to identify the LCA‐producer(s) from five Canadian prairie lakes. In total, 374 operational taxonomic units (OTUs) were identified across the studied samples, of which 234 fell within the Phylum Haptophyta. Among the most abundant OTUs, three were characterized as LCA‐producers, one falling within the Group I haptophytes and two within the Group II haptophytes. The OTU from Group I haptophytes was associated with a single, highly specific LCA profile, whereas Group II OTUs showed higher variability in LCA distributions. Our study revealed that most of the LCA‐producing OTUs thriving in the Canadian lakes are included within the genus Isochrysis , which helps guide selection of the most appropriate calibration for down‐core temperature reconstructions. Our findings also suggest that the temperature dependency is likely consistent within different taxa from Group I and Group II haptophytes, but that other environmental parameters may influence the accuracy of the calibration.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here