z-logo
Premium
Morphodynamic Feedback Loops Control Stable Fringing Flats
Author(s) -
Maan D. C.,
Prooijen B. C.,
Zhu Q.,
Wang Z. B.
Publication year - 2018
Publication title -
journal of geophysical research: earth surface
Language(s) - English
Resource type - Journals
eISSN - 2169-9011
pISSN - 2169-9003
DOI - 10.1029/2018jf004659
Subject(s) - intertidal zone , bathymetry , beach morphodynamics , geology , sediment , elevation (ballistics) , wave height , estuary , geomorphology , current (fluid) , waves and shallow water , sediment transport , oceanography , geometry , mathematics
We apply a 2‐D horizontal process‐based model (Delft3D) to study the feedback mechanisms that control the long‐term evolution of a fringing intertidal flat in the Western Scheldt Estuary. The hydrodynamic model is validated using a comparison with measurements on the intertidal flat and the sediment transport module is calibrated against long‐term morphology data. First, the processes that lead to net sediment exchange between channel and flat are studied. Then, long‐term simulations are performed and the dependency of sediment fluxes on the tidal flat bathymetry, and the corresponding morphodynamic feedback mechanisms are explained. In the long run, relatively stable states can be approached, which are shown to be typical for wave‐dominated fringing mudflats. The system behavior can be explained by the typical feedback mechanisms between the intertidal bathymetry and the hydrodynamic forces on the flat. In the subtidal domain, the impact of small (5–10 cm) wind waves increases with a rising elevation due to decreasing water depths. In the intertidal domain, the wave impact increases with increasing cross‐sectional slope due to wave shoaling. These relationships result in negative (stabilizing) morphodynamic feedback loops. The tidal current velocities and tide‐induced bed shear stresses, on the other hand, are largely determined by the typical horizontal geometry. A stabilizing feedback loop fails, so that there is no trend toward an equilibrium state in the absence of wind waves.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here