Premium
A Parameterization for Volcanic Heat Flux in Heat Pipe Planets
Author(s) -
Kankanamge Duminda G. J.,
Moore William B.
Publication year - 2019
Publication title -
journal of geophysical research: planets
Language(s) - English
Resource type - Journals
eISSN - 2169-9100
pISSN - 2169-9097
DOI - 10.1029/2018je005800
Subject(s) - mantle (geology) , mantle convection , heat flux , earth's internal heat budget , volcanism , thermal conduction , geophysics , geology , planetary differentiation , internal heating , convection , solidus , planet , thermal , heat transfer , mechanics , thermodynamics , tectonics , materials science , physics , lithosphere , astrophysics , paleontology , alloy , composite material
Rocky planets with high levels of internal heat production experience high rates of melting and extensive volcanic resurfacing in the heat pipe mode of planetary heat transport. On Earth, this took place prior to the onset of plate tectonics during the first billion or more years. The extraction of melt from a planetary mantle affects the mantle dynamics, the temperature structure of the interior, the viscosity of mantle material, and the timescales of thermal equilibration in the mantle, and therefore, developing a quantitative parameterization for heat transport by volcanism is necessary to calculate the thermal histories of terrestrial planets efficiently. In this work, we develop a quantitative parameterization of heat transport in planetary mantles including the effect of melting. The heat flux due to melting, the internal temperature of the mantle, the temperature of the lid base, the lid thickness, and the heat flux due to conduction were calculated using the parameterization for different cases of solidus gradient and surface melting temperatures, and the values were compared with the results of numerical simulations for validation. The good fit achieved (<15% relative error) over a large range of melt fluxes with no additional parameters indicates that the parameterization usefully and accurately models the process of mantle convection including melting.