Premium
Radar Reflectivity as a Proxy for the Dust Content of Individual Layers in the Martian North Polar Layered Deposits
Author(s) -
Lalich D. E.,
Holt J. W.,
Smith I. B.
Publication year - 2019
Publication title -
journal of geophysical research: planets
Language(s) - English
Resource type - Journals
eISSN - 2169-9100
pISSN - 2169-9097
DOI - 10.1029/2018je005787
Subject(s) - mars exploration program , martian , proxy (statistics) , geology , polar , radar , amazonian , paleoclimatology , atmospheric sciences , environmental science , earth science , climate change , climatology , physical geography , astrobiology , geography , oceanography , physics , telecommunications , ecology , amazon rainforest , astronomy , machine learning , computer science , biology
Abstract The stratigraphy of the north polar layered deposits (NPLD) of Mars is believed to contain a climate record of the recent Amazonian period. However, full utilization of this record is difficult without detailed information regarding the physical properties of the constituent layers. Here we present a method for determining the fractional dust content of individual layers using a combination of orbital radar reflectivity measurements and physical modeling. We apply this method to the upper 500 m of the NPLD at 10 study sites and compare the results to a cap‐wide radar‐mapped surface. Our results show that reflectivity can vary drastically both geographically and with depth, a result we attribute to changing dust content, though the impact of variable layer thickness cannot be totally discounted. These findings imply large‐scale regional patterns in ice and dust accumulation do not remain consistent through time. We also find that current models of Mars's dust cycle and polar ice accumulation consistently underpredict the dust content of layers, indicating that our understanding of dust transport, dust sequestration, or dust preservation remains incomplete. Comparisons of study sites on the NPLD also show that some locations contain fewer radar reflectors than others, meaning they may contain a less complete record of the planet's recent paleoclimate, and any future efforts to use the polar layered deposits as a climate proxy, including in situ measurements, should take this into account by choosing study sites wisely.