z-logo
Premium
The Impact of Human‐Induced Climate Change on Regional Drought in the Horn of Africa
Author(s) -
Marthews T. R.,
Jones R. G.,
Dadson S. J.,
Otto F. E. L.,
Mitchell D.,
Guillod B. P.,
Allen M. R.
Publication year - 2019
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1029/2018jd030085
Subject(s) - evapotranspiration , climate change , precipitation , climatology , climate model , environmental science , geography , ecology , meteorology , geology , biology
A severe drought hit the Greater Horn of Africa (GHA) in 2014, but it remains unclear whether this extreme event was attributable to anthropogenic climate change or part of longer‐term natural cycles. Precipitation patterns are known to be changing across the GHA, but trajectories in land surface variables are much less well known. We simulated the GHA land surface environment to assess the balance between natural cycles and human‐induced climate change. Using a new form of event attribution study where we focused on both climate variables and also directly simulated land surface variables, we combined publicly volunteered distributed computing with land surface simulations to quantify land surface responses. Uncertainty was quantified both for climate model and land surface model outputs. We identified two distinct “drought trajectories” in the GHA bimodal seasonality area during the March–May (Long Rains season) of 2014. Human‐induced climate change may have resulted in regions from Lake Nalubaale (Lake Victoria) to Northern Kenya receiving less precipitation in this season and having up to 20% higher probability of drought‐level evapotranspiration rates (increasing drought). In contrast, the simulated anthropogenic climate change signal for this season induced somewhat wetter conditions and up to 20% lower probability of drought‐level evapotranspiration in Eastern Ethiopia, Southern Somalia, and coastal Kenya (decreasing drought). Uncertainties in our modeling system varied by region and variable of focus, but broadly we found that land surface simulation uncertainty neither added significantly to climate model uncertainty nor significantly reduced it.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here