z-logo
Premium
The Plausibility of September–November Congo Basin Rainfall Change in Coupled Climate Models
Author(s) -
Creese A.,
Washington R.,
Munday C.
Publication year - 2019
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1029/2018jd029847
Subject(s) - climatology , structural basin , coupled model intercomparison project , climate change , tropics , dry season , environmental science , wet season , climate model , tropical atlantic , geography , geology , sea surface temperature , oceanography , ecology , paleontology , biology , cartography
Abstract As one of three global hot spots of tropical convection, potential future changes to the Congo Basin climate system will have regional and tropics‐wide implications. However, the latest generation of climate models from the Coupled Model Intercomparison Project 5 disagree on the sign and magnitude of future change and diverge in their estimation of the historical rainfall climatology. This study assesses the plausibility of different signals of future rainfall change by examining the processes relating to rainfall projections in samples of historically wet or dry models during the September–November rainy season. In the west Congo Basin, there are no significant differences in rainfall change projections in models that are historically wet or dry. Both composites feature wetting in the north (up to 1.8 mm/day) and drying in the south, associated with enhanced tropical Atlantic sea surface temperatures, increased evaporation, and enhanced low‐level moisture flux into the basin. In the east Congo Basin, there is greater evidence that differences in model historical climatologies has an influence on the magnitude of future rainfall change. Historically wet models project significant wetting in the northeast (1.19 mm/day) associated with a weakened northern component of the African Easterly Jet (AEJ) and enhanced moisture convergence. Dry models do not capture the structure of the AEJs in the historical period, and so changes to the AEJs under warming do not produce the same wetting pattern. The analysis therefore casts doubt on the plausibility of the driest rainfall change signals in the east Congo Basin.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here