Premium
Global Evaluation of Proxy System Models for Stable Water Isotopes With Realistic Atmospheric Forcing
Author(s) -
Okazaki Atsushi,
Yoshimura Kei
Publication year - 2019
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1029/2018jd029463
Subject(s) - proxy (statistics) , environmental science , ice core , climatology , forcing (mathematics) , climate change , atmospheric sciences , physical geography , geology , oceanography , computer science , geography , machine learning
Proxy system models (PSMs) are an important bridge between climate simulations and climate records prior to the period where instrumental observations are available. PSMs help to interpret what proxies show and how they record climate. Although previous studies have evaluated PSMs for individual sites, their systematic evaluation on a global scale has not yet been conducted. This study evaluated the performance of PSMs for stable water isotopes in ice cores, corals, and tree‐ring cellulose for the period 1950–2007. Spatial distributions of the mean state were well simulated for all proxy types, albeit with a bias for tree‐ring cellulose. Interannual variability was well simulated for corals and tree‐ring cellulose. These results indicate that the models represent key mechanisms for the proxies. In contrast, the reproducibility of interannual variability in ice cores was markedly lower than that for the other proxies. Although the reproducibility was limited by the atmospheric forcing used to drive the model, the results suggest that the PSM may be missing postdepositional processes, such as sublimation for ice cores on the interannual time scale.