z-logo
Premium
The Contributions of Winter Cloud Anomalies in 2011 to the Summer Sea‐Ice Rebound in 2012 in the Antarctic
Author(s) -
Wang Yunhe,
Yuan Xiaojun,
Bi Haibo,
Liang Yu,
Huang Haijun,
Zhang Zehua,
Liu Yanxia
Publication year - 2019
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1029/2018jd029435
Subject(s) - sea ice , arctic ice pack , arctic sea ice decline , antarctic sea ice , climatology , oceanography , drift ice , cryosphere , sea ice concentration , geology , fast ice , sea ice thickness , environmental science
Unlike the rapid decline of Arctic sea ice in the warming climate, Antarctic sea‐ice extent exhibits a modest positive trend in the period of near four decades. In recent years, the fluctuation in Antarctic sea ice has been strengthened, including a decrease toward the lowest sea‐ice extent in February 2011 for the period of 1978–2016 and a strong rebound in the summer of 2012. The sea‐ice recovery mainly occurs in the Weddell Sea, Bellingshausen Sea, Amundsen Sea, southern Ross Sea, and the eastern Somov Sea. This study offers a new mechanism for this summertime sea‐ice rebound. We demonstrate that cloud‐fraction anomalies in winter 2011 contributed to the positive Antarctic sea‐ice anomaly in summer 2012. The results show that the negative cloud‐fraction anomalies in winter 2011 related to the large‐scale atmospheric circulation resulted in a substantial negative surface‐radiation budget, which cooled the surface and promoted more sea‐ice growth. The sea‐ice growth anomalies due to the negative cloud forcing propagated by sea‐ice motion vectors from September 2011 to January 2012. The distribution of the sea‐ice anomalies corresponded well with the sea‐ice concentration anomalies in February 2012 in the Weddell Sea and eastern Somov Sea. Thus, negative cloud‐fraction anomalies in winter can play a vital role in the following summer sea‐ice distribution.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here