z-logo
Premium
Wave Attenuation Through an Arctic Marginal Ice Zone on 12 October 2015: 1. Measurement of Wave Spectra and Ice Features From Sentinel 1A
Author(s) -
Stopa J. E.,
Ardhuin F.,
Thomson Jim,
Smith Madison M.,
Kohout Alison,
Doble Martin,
Wadhams Peter
Publication year - 2018
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1029/2018jc013791
Subject(s) - geology , sea ice , wavelength , wind wave , sea ice thickness , arctic , drift ice , arctic ice pack , geophysics , remote sensing , climatology , oceanography , physics , optics
A storm with significant wave heights exceeding 4 m occurred in the Beaufort Sea on 11–13 October 2015. The waves and ice were captured on 12 October by the Synthetic Aperture Radar (SAR) on board Sentinel‐1A, with Interferometric Wide swath images covering 400 × 1,100 km at 10 m resolution. This data set allows the estimation of wave spectra across the marginal ice zone (MIZ) every 5 km, over 400 km of sea ice. Since ice attenuates waves with wavelengths shorter than 50 m in a few kilometers, the longer waves are clearly imaged by SAR in sea ice. Obtaining wave spectra from the image requires a careful estimation of the blurring effect produced by unresolved wavelengths in the azimuthal direction. Using in situ wave buoy measurements as reference, we establish that this azimuth cutoff can be estimated in mixed ocean‐ice conditions. Wave spectra could not be estimated where ice features such as leads contribute to a large fraction of the radar backscatter variance. The resulting wave height map exhibits a steep decay in the first 100 km of ice, with a transition into a weaker decay further away. This unique wave decay pattern transitions where large‐scale ice features such as leads become visible. As in situ ice information is limited, it is not known whether the decay is caused by a difference in ice properties or a wave dissipation mechanism. The implications of the observed wave patterns are discussed in the context of other observations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here