Premium
Attenuation and Directional Spreading of Ocean Waves During a Storm Event in the Autumn Beaufort Sea Marginal Ice Zone
Author(s) -
Montiel F.,
Squire V. A.,
Doble M.,
Thomson J.,
Wadhams P.
Publication year - 2018
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1029/2018jc013763
Subject(s) - buoy , geology , amplitude , attenuation , wind wave , storm , sea ice , significant wave height , transect , geodesy , exponential function , geophysics , atmospheric sciences , meteorology , seismology , climatology , physics , oceanography , optics , mathematical analysis , mathematics
This paper investigates the attenuation and directional spreading of large amplitude waves traveling through pancake ice. Directional spectral density is analyzed from in situ wave buoy data collected during a 3‐day storm event in October 2015 in the Beaufort Sea. Two proxy metrics for wave amplitude obtained from energy density spectra, namely, spectral amplitude and significant wave height, are used to track the waves as they propagate along transects through the array of buoys in the predominantly pancake ice field. Two types of wave buoys are used in the analysis and compared, exhibiting significant differences in the wave energy density and directionality estimates. Although exponential decay is observed predominantly, one of the two buoy types indicates a potential positive correlation between wave energy density and the occurrence of linear wave decay, as opposed to exponential decay, in accord with recent observations in the Antarctic marginal ice zone. Factors affecting the validity of this observation are discussed. An empirical power law with exponent 2.2 is also found to hold between the exponential attenuation coefficient and wave frequency. The directional content of the wave spectrum appears to decrease consistently along the wave transects, confirming that wave energy is being dissipated by the pancake ice as opposed to being scattered by ice cakes.