Premium
Indigenous Organic‐Oxidized Fluid Interactions in the Tissint Mars Meteorite
Author(s) -
Jaramillo Elizabeth A.,
Royle Samuel H.,
Claire Mark W.,
Kounaves Samuel P.,
Sephton Mark A.
Publication year - 2019
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2018gl081335
Subject(s) - meteorite , environmental chemistry , chemistry , mars exploration program , mass spectrometry , martian surface , pyrolysis , gas chromatography , sulfate , martian , astrobiology , organic chemistry , chromatography , physics
The observed fall and rapid recovery of the Tissint Mars meteorite has provided minimally contaminated samples of the Martian surface. We report analyses of Tissint for organic compounds by pyrolysis‐gas chromatography‐mass spectrometry and for soluble salts by ion chromatography. Pyrolysis‐gas chromatography‐mass spectrometry analysis shows the presence of organic compounds similar to those in the Mars EETA79001 and Nakhla meteorites. The organic profile is dominated by aromatic hydrocarbons, including oxygen and nitrogen‐containing aromatics, and sulfur‐containing species including thiophenes. The soluble salts in Tissint are dominated by sulfate and various oxidation states of chlorine, including perchlorate. The organic compounds and salts in the soils from the Tissint recovery strewn field differ significantly from those found in Tissint suggesting minimal terrestrial contamination. Our results support the hypothesis that the soluble inorganic components of Tissint are most likely a result of indigenous fluid inclusion, thus providing a glimpse into the composition of early Martian fluids.