Premium
Satellite Observations of SST‐Induced Wind Speed Perturbation at the Oceanic Submesoscale
Author(s) -
Gaube P.,
Chickadel C. C.,
Branch R.,
Jessup A.
Publication year - 2019
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2018gl080807
Subject(s) - sea surface temperature , mesoscale meteorology , geology , buoy , wind speed , temperature gradient , atmospheric sciences , planetary boundary layer , climatology , turbulence , meteorology , oceanography , physics
Sea Surface Temperature (SST) modifies the turbulent mixing, drag, and pressure gradients within the marine atmospheric boundary layer that accelerate near‐surface flow from cool to warm SST and decelerate the flow from warm to cool SST. This phenomenon is well documented on scales of 100–1,000 km (the oceanic mesoscale); however, the nature of this air‐sea coupling at scales on the order of 1–10 km (the submesoscale) remains unknown. The Advanced Spaceborne Thermal Emission and Reflection Radiometer can be used to study submesoscale phenomena because the high‐resolution infrared and near‐infrared images can used to estimate both SST and wind speed. Observations of dramatic temperature and wind gradients along the Gulf Stream landward edge are used to examine the surface wind response to submesoscale fronts in SST. Our analysis indicates that SST‐induced wind speed perturbations are observed at the scales of order 1–10 km, significantly smaller than previously suggested.