z-logo
Premium
Sensitivity of Seasonal Snowfall Attribution to Atmospheric Rivers and Their Reanalysis‐Based Detection
Author(s) -
Huning Laurie S.,
Guan Bin,
Waliser Duane E.,
Lettenmaier Dennis P.
Publication year - 2019
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2018gl080783
Subject(s) - snow , orographic lift , environmental science , climatology , orography , atmospheric sciences , meteorology , geography , precipitation , geology
Abstract We characterize the sensitivity of atmospheric river (AR)‐derived seasonal snowfall estimates to their atmospheric reanalysis‐based detection over Sierra Nevada, USA. We use an independent snow data set and the ARs identified with a single detection method applied to multiple atmospheric reanalyses of varying horizontal resolutions, to evaluate orographic relationships and contributions of individual ARs to the seasonal cumulative snowfall (CS). Spatial resolution differences have relatively minor effects on the number of ARs diagnosed, with higher‐resolution data sets identifying four more AR days per year, on average, during the 1985–2015 winters. However, this can lead to ~10% difference in AR attribution to the mean domain‐wide seasonal CS and differences up to 47% snowfall attribution at the seasonal scale. We show that identifying snow‐bearing ARs provides more information about the seasonal CS than simply knowing how many ARs occurred. Overall, we find that higher‐resolution atmospheric reanalyses imply greater attribution of seasonal CS to ARs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here