z-logo
Premium
Radiative Effects of Secondary Ice Enhancement in Coastal Antarctic Clouds
Author(s) -
Young G.,
LachlanCope T.,
O'Shea S. J.,
Dearden C.,
Listowski C.,
Bower K. N.,
Choularton T. W.,
Gallagher M. W.
Publication year - 2019
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2018gl080551
Subject(s) - radiative transfer , environmental science , ice cloud , atmospheric sciences , climatology , radiative cooling , radiative forcing , climate model , geology , climate change , meteorology , physics , oceanography , quantum mechanics
Secondary ice production (SIP) commonly occurs in coastal Antarctic stratocumulus, affecting their ice number concentrations (N ice ) and radiative properties. However, SIP is poorly understood and crudely parametrized in models. By evaluating how well SIP is captured in a cloud‐resolving model, with a high‐resolution nest within a parent domain, we test how an improved comparison with aircraft observations affects the modeled cloud radiative properties. Under the assumption that primary ice is suitably represented by the model, we must enhance SIP by up to an order of magnitude to simulate observed N ice . Over the nest, a surface warming trend accompanied the SIP increase; however, this trend was not captured by the parent domain over the same region. Our results suggest that the radiative properties of microphysical features resolved in high‐resolution nested domains may not be captured by coarser domains, with implications for large‐scale radiative balance studies over the Antarctic continent.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here