Premium
Cloud Feedback Key to Marine Heatwave off Baja California
Author(s) -
Myers Timothy A.,
Mechoso Carlos R.,
Cesana Gregory V.,
DeFlorio Michael J.,
Waliser Duane E.
Publication year - 2018
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2018gl078242
Subject(s) - downwelling , climatology , sea surface temperature , environmental science , arid , oceanography , geology , upwelling , paleontology
Between 2013 and 2015, the northeast Pacific Ocean experienced the warmest surface temperature anomalies in the modern observational record. This “marine heatwave” marked a shift of Pacific decadal variability to its warm phase and was linked to significant impacts on marine species as well as exceptionally arid conditions in western North America. Here we show that the subtropical signature of this warming, off Baja California, was associated with a record deficit in the spatial coverage of co‐located marine boundary layer clouds. This deficit coincided with a large increase in downwelling solar radiation that dominated the anomalous energy budget of the upper ocean, resulting in record‐breaking warm sea surface temperature anomalies. Our observation‐based analysis suggests that a positive cloud‐surface temperature feedback was key to the extreme intensity of the heatwave. The results demonstrate the extent to which boundary layer clouds can contribute to regional variations in climate.