z-logo
Premium
Real‐Options Water Supply Planning: Multistage Scenario Trees for Adaptive and Flexible Capacity Expansion Under Probabilistic Climate Change Uncertainty
Author(s) -
Erfani Tohid,
Pachos Kevis,
Harou Julien J.
Publication year - 2018
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2017wr021803
Subject(s) - net present value , stochastic programming , present value , flexibility (engineering) , probabilistic logic , computer science , water supply , operations research , scheduling (production processes) , mathematical optimization , investment decisions , engineering , economics , mathematics , production (economics) , management , finance , artificial intelligence , environmental engineering , macroeconomics
Planning water supply infrastructure includes identifying interventions that cost‐effectively secure an acceptably reliable water supply. Climate change is a source of uncertainty for water supply developments as its impact on source yields is uncertain. Adaptability to changing future conditions is increasingly viewed as a valuable design principle of strategic water planning. Because present decisions impact a system's ability to adapt to future needs, flexibility in activating, delaying, and replacing engineering projects should be considered in least‐cost water supply intervention scheduling. This is a principle of Real Options Analysis, which this paper applies to least‐cost capacity expansion scheduling via multistage stochastic mathematical programming. We apply the proposed model to a real‐world utility with many investment decision stages using a generalized scenario tree construction algorithm to efficiently approximate the probabilistic uncertainty. To evaluate the implementation of Real Options Analysis, the use of two metrics is proposed: the value of the stochastic solution and the expected value of perfect information that quantify the value of adopting adaptive and flexible plans, respectively. An application to London's water system demonstrates the generalized approach. The investment decisions results are a mixture of long‐term and contingency schemes that are optimally chosen considering different futures. The value of the stochastic solution shows that by considering uncertainty, adaptive investment decisions avoid £100 million net present value (NPV) cost, 15% of the total NPV. The expected value of perfect information demonstrates that optimal delay and early decisions have £50 million NPV, 6% of total NPV. Sensitivity of results to the characteristics of the scenario tree and uncertainty set is assessed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here