z-logo
Premium
Seasonal Wetness, Soil Organic Carbon, and Fire Influence Soil Hydrological Properties and Water Repellency in a Sagebrush‐Steppe Ecosystem
Author(s) -
Chandler David G.,
Cheng Yang,
Seyfried Mark S.,
Madsen Matthew D.,
Johnson Chris E.,
Williams C. Jason
Publication year - 2018
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2017wr021567
Subject(s) - environmental science , soil carbon , infiltration (hvac) , ecosystem , hydrology (agriculture) , steppe , soil texture , soil water , rangeland , soil science , ecology , geology , agroforestry , geography , geotechnical engineering , biology , meteorology
Prescribed fire is an important tool for rangeland management in sage‐steppe ecosystems, yet the long‐term effects of this practice on soil hydraulic properties are not well known. We explore interactions among site geomorphology, soil organic carbon (SOC) soil N, soil water repellency (SWR), and plant community type on infiltration properties before fire and 8 years thereafter in a semiarid research watershed. The objective was to assess the sustainability of rangeland burning in sage‐steppe ecosystems. Many types of measurements were made in three plant communities to identify how differences in soil hydraulic properties are related to differences in plant cover and soil texture and to determine relationships among SOC, SWR, soil water contact angle, and infiltration properties. Measurements were made on transects in burned and unburned catchments. We found that severity and occurrence of surface SWR were substantially reduced 8 years after a fire within the area originally covered with mountain big sagebrush, where the fire intensity was greatest. Surface SWR was lowest in the sparsely vegetated low sagebrush, where SOC was also lowest. Unsaturated hydraulic conductivity ( K h ) increased in each vegetation type over the 8‐year period after burning and was not directly related to SWR. Spatial variability in K h was primarily controlled by soil texture, whereas differences in sorptivity ( S ) were controlled by SWR and aridity. SOC is not well correlated to soil surface SWR. The decadal scale changes in K h and associations between S and site characteristics indicate forms of resilience to fire across a moisture gradient.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here