z-logo
Premium
Multiphase Structural Evolution and Geodynamic Implications of Messinian Salt‐Related Structures, Levant Basin, Offshore Israel
Author(s) -
Kartveit K. H.,
Omosanya K. O.,
Johansen S. E.,
Eruteya O. E.,
Reshef M.,
Waldmann N. D.
Publication year - 2018
Publication title -
tectonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.465
H-Index - 134
eISSN - 1944-9194
pISSN - 0278-7407
DOI - 10.1029/2017tc004794
Subject(s) - geology , evaporite , paleontology , structural basin , salt tectonics , passive margin , siliciclastic , geomorphology , seismology , diapir , sedimentary depositional environment , rift
Speculations surround salt deformation in the Mediterranean Basins, both related to the deformation history and the triggers for halokinesis since the onset of the Messinian Salinity Crisis. This work presents a detailed description of the mechanisms driving internal and external deformation of a salt giant from the Levant Basin, offshore Israel. The intrasalt siliciclastic layers generate good internal reflectivity within the Messinian evaporites, allowing a thorough elucidation of the complex evolution and nature of syn‐Messinian and post‐Messinian structures. We have identified three distinct phases of deformation in the deep basin, based on the orientation, timing, and geometry of their related structures: The first phase is characterized by small‐scaled, gravity‐driven, contractional faults and folds oriented N‐S that have been overprinted by a second syn‐Messinian, NW‐SE trending, deformation phase affecting the clastic bundles. This latter deformation phase is the cause of truncation of the intrasalt stringers on the intra‐Messinian truncation surface. The third deformation phase occurred in the Pleistocene and affected all strata from the Messinian salt to the seabed. This deformational phase produced thrust, strike‐slip, and normal faults, but the dominant orientation of the thrust faults and folds is NNW‐SSE. Our study demonstrates that the first deformation phase was caused by regional uplift along the Levant margin during the Messinian, the second is a response to basin subsidence toward the Cyprus Arc, also syn‐Messinian, and the third phase is likely related to the reorganization of the African‐Eurasian plate boundary and activity along the Dead Sea Transform after the Messinian Salinity Crisis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here