z-logo
Premium
Lithospheric Structure and Tectonic Processes Constrained by Microearthquake Activity at the Central Ultraslow‐Spreading Southwest Indian Ridge (49.2° to 50.8°E)
Author(s) -
Yu Zhiteng,
Li Jiabiao,
Niu Xiongwei,
Rawlinson Nicholas,
Ruan Aiguo,
Wang Wei,
Hu Hao,
Wei Xiaodong,
Zhang Jie,
Liang Yuyang
Publication year - 2018
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.983
H-Index - 232
eISSN - 2169-9356
pISSN - 2169-9313
DOI - 10.1029/2017jb015367
Subject(s) - geology , microearthquake , seismology , lithosphere , ridge push , seafloor spreading , ridge , detachment fault , induced seismicity , crust , classification of discontinuities , mantle (geology) , mid ocean ridge , magma chamber , tectonics , magma , geophysics , volcano , basalt , paleontology , extensional definition , mathematical analysis , mathematics
Beneath ultraslow‐spreading ridges, the oceanic lithosphere remains poorly understood. Using recordings from a temporary array of ocean bottom seismometers, we here report an ~17‐days‐long microearthquake study on two segments (27 and 28) of the ultraslow‐spreading Southwest Indian Ridge (49.2° to 50.8°E). A total of 214 locatable microearthquakes are recorded; seismic activity appears to be concentrated within the west median valley at Segment 28 and adjacent nontransform discontinuities. Earthquakes reach a maximum depth of ~20 km beneath the seafloor, and they mainly occur in the mantle, implying a cold and thick brittle lithosphere. The relatively uniform brittle/ductile boundary beneath Segment 28 suggests that there is no focused melting in this region. The majority of earthquakes is located below the Moho interface, and a 5‐km‐thick aseismic zone is present beneath Segment 28 and adjacent nontransform discontinuities. At the Dragon Flag hydrothermal vent field along Segment 28, the presence of a detachment fault has been inferred from geomorphic features and seismic tomography. Our seismicity data show that this detachment fault deeply penetrates into the mantle with a steeply dipping (~65°) interface, and it appears to rotate to a lower angle in the upper crust, with ~55° of rollover. There is a virtual seismic gap beneath magmatic Segment 27, which may be connected to the presence of an axial magma chamber beneath the spreading center and focused melting; in this scenario, the increased magma supply produces a broad, elevated temperature environment, which suppresses earthquake generation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom