Premium
Uncovering the Iceland Hot Spot Track Beneath Greenland
Author(s) -
Mordret Aurélien
Publication year - 2018
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.983
H-Index - 232
eISSN - 2169-9356
pISSN - 2169-9313
DOI - 10.1029/2017jb015104
Subject(s) - geology , lithosphere , greenland ice sheet , post glacial rebound , tectonics , craton , mantle (geology) , crust , ice sheet , geophysics , seismology , geomorphology
During the past 120 Ma, the Greenland craton drifted over the Iceland hot spot; however, uncertainties in geodynamic modeling and a lack of geophysical evidence prevent an accurate reconstruction of the hot spot track. I image the Greenland lithosphere down to 200‐km depth with both group and phase velocity seismic noise tomography. The 3‐D shear wave velocity model obtained using 4–5 years of continuous seismic records from the Greenland Ice Sheet Monitoring Network is well resolved for most of the Greenland main island. The crustal part of the model clearly shows different tectonic units. The hot spot track is observed as a linear high‐velocity anomaly in the middle and lower crust associated with magmatic intrusions. In the upper mantle, a pronounced low‐velocity anomaly below the east coast might be due to the remnant effect of the Iceland hot spot when it was at its maximum intensity. Thermomechanical modeling suggests that this area has higher temperature and lower viscosity than the surrounding cratonic areas and experiences a higher than average surface heat flow. This new detailed picture of the Greenland lithosphere will drive more accurate geodynamic reconstructions of tectonic plate motions and help to better understand the North Atlantic tectonic history. Models of Greenland glacial isostatic adjustment will benefit from the 3‐D upper‐mantle viscosity model, which in turn will enable more precise estimations of the Greenland ice sheet mass balance.