Premium
The Impact of Energetic Particle Precipitation on Mesospheric OH – Variability of the Sources and the Background Atmosphere
Author(s) -
Zawedde Annet Eva,
Nesse Tyssøy Hilde,
Stadsnes Johan,
Sandanger Marit Irene
Publication year - 2018
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
eISSN - 2169-9402
pISSN - 2169-9380
DOI - 10.1029/2017ja025038
Subject(s) - atmospheric sciences , environmental science , atmosphere (unit) , altitude (triangle) , precipitation , northern hemisphere , mesosphere , mixing ratio , electron precipitation , physics , climatology , stratosphere , meteorology , geology , nuclear physics , magnetosphere , geometry , mathematics , plasma
Using a new analysis technique, we estimate the precipitating particle fluxes measured by the Medium Energy Proton and Electron Detector on the National Oceanic and Atmospheric Administration Polar Orbiting Environmental Satellites. These fluxes are used to quantify the direct impact of energetic particle precipitation (EPP) on mesospheric hydroxyl (OH) measured from the Aura satellite during 2005–2009 in the Northern Hemisphere, covering the declining and minimum phase of solar cycle 23. Using multiple linear regression of nighttime OH volume mixing ratio with temperature, geopotential height, water vapor (H 2 O) volume mixing ratio, Lyman‐alpha (Ly‐ α ) radiation, and particle energy deposition, we account for the background variability and hence the EPP impact independent of season and other short‐term variability. We investigate the relative importance of solar proton events, energetic electron precipitation and the background to OH variability. The background dominates over EPP above 70‐km altitude. Below 70 km, EPP dominates. The maximum EPP contribution is 44% and 34% in the geographic and corrected geomagnetic (CGM) settings respectively at 67 km. Protons dominate over electrons at mesospheric altitudes with maximum contributions of 43% and 32% at 67 km in the geographic and CGM settings, respectively. In a CGM setting, the electrons contribution is comparable to that of protons above 70 km, with a maximum contribution of 11% at 75 km. Since the period investigated is during relatively low solar activity, these results represent a lower estimate of the general EPP contribution to OH variability.