z-logo
open-access-imgOpen Access
Modeled O 2 nightglow distributions in the Venusian atmosphere
Author(s) -
Gagné MarieÈve,
Melo Stella M. L.,
Brecht Amanda S.,
Bougher Stephen W.,
Strong Kimberly
Publication year - 2012
Publication title -
journal of geophysical research: planets
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2012je004102
Subject(s) - airglow , venus , atmosphere (unit) , atmospheric sciences , thermosphere , atmospheric models , atmospheric model , environmental science , latitude , atmosphere of venus , atmospheric circulation , orbiter , physics , geophysics , ionosphere , astrobiology , meteorology , astronomy
In this paper, we study the global distribution of the O 2 Infrared Atmospheric (0‐0) emission at 1.27 μ m in the Venusian atmosphere with an airglow model in combination with atmospheric conditions provided by a three‐dimensional model, the Venus Thermospheric Global Circulation Model. We compare our model simulations with airglow observations of this emission from the Visible and InfraRed Thermal Imaging Spectrometer on board the Venus Express orbiter. Our model is successful in reproducing the latitudinal and temporal trends seen in the observations for latitudes between 0° and 30°, while poleward of 30°, the model results start to diverge away from the measurements. We attribute this discrepancy to the atomic oxygen distribution at these latitudes in our model that is inconsistent with the recent measurements. We also conducted a sensitivity study to explore the dependence of the vertical structure and the distribution of the airglow emission on the atmospheric conditions. The sensitivity study confirms that changes in the distribution of atomic oxygen significantly affect the characteristics of the airglow layer. Therefore, meaningful comparisons with observations require a three‐dimensional model, which accounts for dynamical variations in the background atmosphere. With this investigation, we highlight the impact of the atmospheric conditions on the airglow distribution, which is important for the understanding of how the phenomenon plays.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here