z-logo
Premium
Chaos and irregularity in karst percolation
Author(s) -
Mariethoz Gregoire,
Baker Andy,
Sivakumar Bellie,
Hartland Adam,
Graham Peter
Publication year - 2012
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2012gl054270
Subject(s) - stalagmite , karst , cave , percolation (cognitive psychology) , geology , chaotic , chaos (operating system) , hydrology (agriculture) , meteorology , paleontology , geotechnical engineering , computer science , physics , geography , archaeology , computer security , neuroscience , artificial intelligence , biology
This paper focuses on analyzing chaos in cave percolation water drip rates, which has implications for flow routing in fractured media and on the use of speleothems for paleoclimate reconstructions. It has been shown that the physics of dripping faucets involve a set of non‐linear equations leading to chaotic drip rate, meaning that, for a given drip rate, the interval between individual drops can vary greatly. It can be expected that drip waters supplying stalagmites show similar properties, and consequently the dependency between water flux and stalagmite growth rate or geochemistry could be more complicated than usually assumed. We used high‐frequency monitoring of two contrasting drips in a cave in Australia, and identified chaos in cave drip rate. Our findings also indicate that the occurrence of chaos can give insights into flow routing in fractured media.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here