
Dams impact carbon dynamics in U.S. rivers
Author(s) -
Bhattacharya Atreyee
Publication year - 2012
Publication title -
eos, transactions american geophysical union
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.316
H-Index - 86
eISSN - 2324-9250
pISSN - 0096-3941
DOI - 10.1029/2012eo360011
Subject(s) - colored dissolved organic matter , dissolved organic carbon , detritus , environmental science , aquatic ecosystem , organic matter , environmental chemistry , carbon cycle , estuary , total organic carbon , ecosystem , chemistry , nutrient , ecology , phytoplankton , biology
Dissolved organic carbon (DOC)—which leaches into freshwater systems from plants, soils, and sediments, and from other detritus present in the water itself—is the major food supplement for microorganisms and plays an important role in several environmental processes and in the global carbon cycle. In some aquatic systems such as estuaries, the optically measurable colored component of dissolved organic matter (CDOM) is often proportional to the concentration of DOC. CDOM forms when light‐absorbing compounds are released into the water by decaying organic material and through photochemical degradation of certain organic compounds. Hence, CDOM reflects not just the environment and ecosystem, which is the source of the detritus, but also the processes that deliver the organic matter into aquatic systems. Human activities, such as logging, agriculture, and waste water treatment, also affect CDOM levels in aquatic systems. It is relatively easy and inexpensive to measure the CDOM content in small volumes of water.